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where sums are implicit-on all indices other than { and m,
and —2<pvXn=<2-—1=<i w=I1, and j=k except
for the last term in each of the previous equations, where j
and k can be identical. Note that these expressions are
readily rewritten in analytical forms involving the func-
tion Fafi,j) of Ref. 7. Further, it is simple to code these
expressions in the form of the vertices to obtain mements
for a given configuration of impurities: This is useful for
calculating T for random mixtures of ortho- and para-
H,, for example.™*

IV. CONCLUSIONS

We have obtained general expressions for the first two
nontrivial moments of resonant absorption spectra which

should be of interest for magnetic resonance work. The
method we have developed yields expressions convenient
for practical use with a minimum of detailed commutator
algebra. We should also remark that this analysis is not
limited to spin systems: Similar equations must hold for
more general bilinear Hamiltonians.
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FI1G. 1. {a) Basic vertex from which M, and L, are con-
structed. (b) Graph from which second moment is obtained.

The moments of these functions are given by
LE(jj) = .

i@—w”“zrﬁ(m), n=2,
n

o (7)
M’,‘,‘(U‘)ﬂf_»%?—w’%f}(m), n=0 .

General considerations from analytic function theory im-
ply that knowledge of I'(4) completely specifies T(G).
Reiter and others have shown '2 that the moments M, and
Ln are expressible as a sum of graphs constructed from
vertices of the type illustrated in Fig. 1{a). It has been
shown that the second moment can be represented as the
sum of all topologically distinct? graphs of the type indi-
cated in Fig. 1(b), where the internal-site indices must be
summed over. Note that we did not explicitly attach
operator indices to the internal lines: In applying Reiter’s
method, it is necessary to write down and ¢valuate each
graph form [Fig. 1(b)] producing each graph with distinct
operator labels'separately, '

While explicitly writing out all internal operator Hnes is
practical for some simple Hamiltonians, this becomes
quite laborious for complicated interactions, even for the
second moment, i the structure of thé graphs is not
strongly constrained. To illustrate this point, consider the
EQQ Hamiltenian. In this case, 30 distinct graphs must

be considered for the second moment for each Graen’s-i

FIG. 2. (a) Corresponds to first term of Eq. (8); (b} corre-
sponds to second term of Eq. (8).

function. There are very many more graphs for the fourth
moment. A simple way to alleviate this proliferation of
diagrams is to take a different point of view. It is possible
to construct the moments by writing out all possible
internal-site lines explicitly, and summing only on opera-
tor indices for the internal lines. The second moment can
then be expressed as

MEG) =L3j) =8, ¥ 0g5,ik) 0%, (k)
k.py
+Zﬂa7ﬂ(i'j)ﬂzpr(fj) . (8)

B.r
In this and futiire equations, an asterisk denotes complex
conjugate. The first term of Eq. (8) corresponds to Fig.
2{(a), the second to Fig. 2(b). While this approach is com-
pietely equivalent to Reiter’s method, it enables us to ob-
tain such general representations for moments as in Eq.
(8). For the fourth moment we use the same method, but
the number of graphs involved is too great to reproduce
here. We will just observe that the self-energy moment
L3, j) is made up of graphs of the variety depicted in
Fig. 3. We show examples of the bubble diagrams [Fig.
3(a)] and vertex corrections [Fig. 3(b)}. There are 8 dis-
tinct bubbles and 16 vertex corrections for the fourth mo-
ment. Adding up all of these contributions, we obtain the
following formidable looking expression for the fourth
self-energy moment

L3G) =B yif ) {BEeik Y Beik V* (alyif)* + (ayBij ) (Boejk ) ((8ejk Y* (aytif)*
+ CayBif Y Pedik Hibeik Y* (ay(ik)* + (aByif) (y8Lik ) (eBsif)}* (aelik)*

-+ arBif Y y84ik MebBif)* (aelik)* + (ayBif) (y(8ik ) (eBsjk)* (ageji)*
+(aByij )"(7{4_6,-5553%&35&.)*(aer,’,’z_'j)* +aypij) (y(8ik) (e8pjk)* (aleki)*18;;

4 (ayBii ) (BEeik W Be i) * (alyif)* + (aByij ) (Boeik (¢ Seik )* (andif)*
+(ayﬁfk)(ﬁfﬁjk)(.g&ejk)*(ar;’yij)*+(aﬂyij)(ﬂﬁﬂ'k)({fﬁik)"(ar{jk)*
+(aBrik Y Boeij ebij)* (alyjk )™ + (aByik Y ydLjk ) (e5Bik ) * (alek))*
+ (aByik My 8k ) (e8pii)* (aeljk )* + (ayBik ) (¥8Lij ) etk ) * (aleki)*
+(aﬁ}:‘k}(yagkj)(eﬁ&k)*(agefj)* + (afyij )y {8k edpik ) * (alekj)™
+(ayBij ) (y(8ik Y eBdjk )* (aelif)* +{aByij WLk Hepsik Y* (aleij}*
+(ayBik ) (yg5ij HedBik ) * Caelij)* + (aypik Y (y88ij ) (ebpik Y* (aleij)*
+ (apyij Y y8ik Y (e8BijY* (aeljk )* + (aypif HyLik Y epsif ) * (aeljk)* | (9}
where fo‘r brevity (afyij) = 0 .4,(if), and sums are implicit on B, 7, 6, ¢, {, k, and j in the diagonal part. The Van Vleck

. fourth moment is

M3y =L5f) + T MM (kj), for MPGj)=8; T (aByik)(8ByikY* + ¥ (aypij) (887ij)* .
5.k
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other than i and m of the analytic expression:

lex(ij)gkw-l(ik)gxwv G[)Q*muq(ik)n*wu (][)Q*mm(lj) . (2)
-2y N Lv.052
- 1w,y Ag]
<jki> eneighbors

The complete sixth moment for o = (I,m) is just the sum of all decorated graphs which
start and end with (1,m) lines. The graph of Fig. 3 involves triple sums on sites, so thar
for o~H, concentrations ¢, each of these diagrams is proportional to ¢®. There are
actually many graphs which are proportional to ¢ and c¢Z Following a procedure first
proposed by Abrahams and Kittel,'® it is then evident that the average moments for the

dilute lattice are of the form:
Mglc) = 8c + ec? + Lc3 . (3

The sums of the type indicated in Eq. (2) were quite tedious as is evident by the large
number of spin and site indexes. In fact, the evaluation of some of these graphs required
a supercomputer. All diagrams were evaluated in a nearest neighbor approximation,
which has been justified by Hama and Nakamura,'' and Harris.! For c=1 we find that
the difference between nearest and second nearest neighbors is =1%. This is fortunate,

since some of the diagrams would be virtually intractable beyond nearest neighbors.
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FIG. 5. Comparison of HD relaxation data with theory.
Data are from Ref. 5. We illustrate experiment and theory with
a subtraction of 5X107° from n-H, concentrations reported in
Ref. 5 (dashed line), and the theoretical predictions using the
concentrations originally given in Ref. 5 (solid lines). Circles,
squares, and diamonds refer to normal concentrations
H,=0.0001, 0.00028 and 0.0063, respectively, according to
Hardy and Gaines.
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FIG. 1. Strikingly inconsistent line-shape functions for one-
and two-moment reconstructions neglecting inhomogeneous
broadening at ¢=0001. In this and all other plots of line
shapes, the line shape function is normalized to 7. and the fre-
guency is in reduced units of , =ca,, where c is the spin con-
centration. Although it is difficult to sec on this plot, the two
momen! reconstruction has a value of about 1.8 at the origin.

inhomogeneously broadened).

This works also clearly reflects the existence of a con-
tinuum for the dilute limit. We find that for any €> 0,
the ratio of the homogeneous population to the total
number of spins

. yoo
3_’“%) Ncon‘ti /N 1tal

- is finite for all concentrations (down to c==0.001) and de-
pends only on the value of € chosen, and the assumption
that the alloy is random. If a continuum did not exist,
one could make the limit arbitrarily small by considering
a sufficiently dilute lattice. For all very dilute cases we
considered {e <B3.01) we found that about 10% of the
spins were in the continaum for optimal €.

1. RESULTS AND DISCUSSION

A, High concéntrations

s Fig. 2 we present our line shape functions for high
" concentrations using average moments. For this concen-
trafion regime, the line shapes bear some interesting
differences. The [100] case is flattened because of the
strongly anisotropic dipolar interaction with spins in the
. first shell. The other two common directions [110] and
1111} are much more Gaussian in appearatice. We expect
the average moment method to be valid for concentra-
tions sufficiently high that isolated configurations are im-
probable. In practice, for a sc iattice, the great majority
of line broadening is continuum in origin down to ¢ =0.4.
In all graphs of line shape functions, frequencies are mea-
" sured in units of w, ==cwy, where w, is given in Sec. L
L 1w denotes line shape functions in the figures.

B. Low concentrations

For the low-concentration limit, we predict a line
width surprisingly consistent with other calculations.
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The early work of Kittel and Abrahams' and Ander-
son' led to half-widths at half maximum of =353 o,
and 5=13.8 w.. We predict §=3.7 w_, in the notation of
our figures. The plots of Fig. 3 are all for the [110] direc-
tion and for ¢ =10"7. For low concentrations, the
difference in line shapes is negligible for differing Zeeman
field configurations—this is a consequence of the dipolar
coupling J,; having zero-angle average, and essentially all
angles with respect to a given site being attainable for
¢ —0.

Figure 4 illustrates our method for ¢ = ; with Zeeman
field along the [110] direction. €=0.35 was again the
maximally consistent choice, and about 30% of the spins
were in the continuum. For high concentrations the con-
tingum component continued to grow.

it is interesting to compare this work to average mo-
ments in the regime where they overlap (¢>0.3). For
c==1, there is a significant (but tolerable) discrepancy be-
tween the self-energy fit to L,, L, and experiment,
whereas the three-moment reconstruction almost exactly

" reproduced experiment.’* Fortunately, as the concentra-

tion decreases, the two-moment fit improves as the con-
tinzum part of the line becomes more Gaussian {Fig. 5).

W g

FI1G. 2. Line-shape functions at high concentrations and for
differemt Zeernan field configurations. {a) IHustrates the line
shapes for the [100] direction, (b} corresponds to {110}, and )
to [111].
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FIG. 3. Line shapes for different ¢ corresponds near the op-
timally consistent value of 0.35. All plots are for c=0.001. (a)
Depicts the case of e=0.25, where 37% of the spins are homo-
geneously broadened. Note the sharp feature in the two mo-
ment reconstructions. (b) €=10.35 has 9% of the spins in the
continuttm. (¢} ¢=0.40 has 6% in the continuum. 1, composite
onie-moment reconstruction; 2, composite two-moment recon-
struction; 3, inhomogeneous; 4, homogeneous one moment; 5,
‘homogeneous twg moment.
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FIG. 5. Comparison of continuum component of line shape
and average moments {c=0.3, [110}).

As an independent test of our work, we formed the
Green’s function by diagonalizing the secular dipolar
Hamiltonian for several configurations. Because of the
prohibitive size of the matrix to diagonalize, even for a
moderate number of spins, we present our results-only for
a very dilute lattice (¢=0.001), where any particular spin
is influenced primarily by a few neighboring spins, We
applied periodic boundary conditions to reduce edge
effects, and performed the indicated diagonalization for
up to nine spins. As we illustrate in Fig. 6, the agreement
between the moment analysis and the simulation is
reasohable. We are inclined to accept the moment work
as the better predicted line shape, since it was computa-
tionally feasible to work with many more spins, and
easier to configuration average to convergence. The fair
agreement between the two methods does suggest that for
the dilute limit most of the broadening of the line is inho-
mogeneous. This is because only inhomogeneous
broadening could be well represented by nine or less
spins. :

C. Discussion

A distinct advantage of simulating randomly diluted
lattices is that the investigator is forced to deal with the
problem on a configuration by configuration basis. This
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F1G. 4. Line shape for ¢=0.1 and [110]. Here e=0.35, and Wt
15% of the spins are in the continuum. 1, composite one-
moment reconstruction; 2, composite fwo-moment reconstruc-
tion; 3, inhomogeneous; 4, homogeneous one moment; 5, homo-
geneous two moment.

FIG. 6. Comparison of diagonalizing the secular spin-spin 1o~
teraction, forming the Green's function directly, and the rgstilt
of our method. Both plots are for ¢==0.001 and the [110] orien-
tation of the Zeeman field.





